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Abstract

The dynamic properties of viscoelastic damping materials are highly frequency- and temperature-dependent. Numerical

methods of structural and acoustic systems require the mathematical model for these dependencies. The fractional-

derivative model on damping material has become a powerful solution that describes the frequency-dependent dynamic

characteristics of damping materials. The model parameters on a damping material are very important information both

for describing the responses of damped structures and in the design of damped structures. The authors proposed an

efficient identification method of the material parameters using an optimization technique, showing its applicability

through numerical studies in a previous work. In this study, the proposed procedure is applied to a damping material to

identify the fractional-derivative-model parameters of viscoelastic materials. In the proposed method, frequency response

functions (FRFs) are measured via a cantilever beam impact test. The FRFs on the points identical to those measured are

calculated using an FE model with the equivalent stiffness approach. The differences between the measured and the

calculated FRFs are minimized using a gradient-based optimization algorithm in order to estimate the true values of the

parameters. The FRFs of a damped beam structure are measured in an environmental chamber at different temperatures

and used as reference responses. A light impact hammer and a laser vibrometer are used to measure the reference

responses. Both linear and nonlinear relationships between the logarithmically scaled shift factors and temperatures are

examined during the identification of the material parameters. The applied results show that the proposed method

accurately identifies the fractional-derivative-model parameters of a viscoelastic material.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Currently, increasingly lightweight designs of mechanical products such as automobiles, ships, and electric
appliances have become common in order to improve fuel economy and to reduce the costs of production.
However, this tendency is frequently associated with vibration and noise problems. In these cases, viscoelastic
damping materials have become widely used to suppress mechanical vibrations [1]. Placement of constrained
or unconstrained viscoelastic damping layers on the surface of structures is a typical method to introduce
damping in structures [2–4]. To predict the responses of the damped structures, one must know the material
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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properties of the damping material. Therefore, knowledge of the material properties of a viscoelastic damping
material is very important for describing the responses of a damped structure and in the design of the damped
structure.

The dynamic properties of viscoelastic damping materials show strong frequency- and temperature-
dependencies. Generally the storage modulus of damping material increases monotonically along frequency
axis, and the loss factor shows a wide peak along the frequency axis. Operational temperature of viscoelastic
damping material varies the dynamic properties by shifting the frequency characteristics on frequency axis. To
describe the frequency- and temperature-dependent dynamics properties efficiently, computerized numerical
analysis methods such as, for example, finite element method require a mathematical model on the dynamic
properties. In recent years, the fractional-derivative model has been used to describe the dynamic
characteristics of viscoelastic damping materials that are dependent upon the frequency and temperature
[5,6]. The fractional-derivative model can easily and simply describe the real dynamic behavior of viscoelastic
damping materials using only four parameters [7–9]. To apply the mathematical form to a damping material,
the model parameters should be easily estimated through experiments because there are not only many kinds
of damping material but also variation in polymeric composition. The fractional-derivative-model parameters
can be identified from the measured elastic moduli and loss factors using a curve-fitting process [10,11].
However, to obtain the elastic moduli and loss factors of a viscoelastic damping material using the
conventional method, many tests are typically required at different temperatures, as the elastic moduli and loss
factors are detected only at the resonant frequencies of frequency response functions (FRFs). After collecting
a large amount of data at different frequencies and temperatures in the conventional method, experimental
data are compared with theoretical values from the mathematical model. The difference between the
experimental data and the theoretical values must be minimized by changing the model parameters in order to
estimate the parameters of the fractional-derivative model [12–14]. A curve-fitting process then gives the
fractional-derivative model of a viscoelastic material, which can describe frequency-dependent dynamic
characteristics of the damping material over a concerned reduced frequency range. Here, it should be noted
that an efficient updating scheme of the parameters is needed in the curve-fitting process for the rapid
identification of the material properties. However, the conventional trial-and-error approach is especially
time-consuming in terms of the data collection step, as well as the curve-fitting process. The dynamic
characteristics of viscoelastic damping materials can vary significantly depending on the combination of
polymers, and many kinds of damping materials are produced for special purposes. In this situation the
conventional method is not satisfactory to rapidly provide the material parameter information of a damping
material. Consequently, an efficient identification method to estimate the fractional-derivative-model
parameters of damping material is needed.

Several studies have attempted to identify the material properties of viscoelastic damping materials.
Lekszycki et al. [15] investigated the identification problem of the constitutive parameters of a viscoelastic
material using a one-dimensional Voigt model and the optimality conditions in a constrained beam. Deng
et al. [16] proposed a system identification procedure based on direct nonlinear optimization and sub-optimal
methods to estimate the viscoelastic parameters of polyurethane foam modeled by a fractional-derivative
model. Lee and Hwang [17] proposed a structural joint identification method in a real structure in which the
differences between calculated FRFs and measured FRFs are minimized using a gradient-based optimization
method. Kim and Lee [18] also proposed an efficient identification method of the material parameters using an
optimization technique and showed its applicability through numerical examples.

In this paper, the earlier work [18] is extended for a real viscoelastic damping material to identify the
fractional-derivative-model parameters of a damping material. An identification procedure of the fractional-
derivative-model parameters is proposed using a finite element model of an unconstrained beam and a
gradient-based numerical search algorithm. In the proposed method, the measured FRFs of a damped beam
are used not at the resonant frequencies but at all frequencies so that the number of required experiments can
be reduced considerably. In addition, analytic sensitivity formulae are derived and used in the curve-fitting
process in order to speed up the identification process. For robustness and efficiency, the identification
procedure is divided into two steps: the first is a resonant frequency alignment step and the second is
minimization of the difference between measured FRFs data and simulated FRFs ones. The proposed method
is applied to a viscoelastic damping material to demonstrate its correctness and efficiency.
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2. Description of viscoelastic vibration damping

2.1. Fractional-derivative model

Viscoelastic behavior occurs in a wide range of materials and can be characterized by liquid-like elastic
behavior. Materials that experience viscoelastic behavior include acrylics, rubber and adhesives. For these
materials, a linear elastic constitutive relationship using Hook’s law is not an accurate representation of the
dynamic characteristics when attempting to explain such factors as creep and stress relaxation over short time
scales. Instead, the complex modulus concept is extensively used to describe the dynamic characteristics of
viscoelastic materials. The complex modulus is employed using the approach of the constitutive relationship of
Hook’s law in the frequency domain as follows:

s ¼ E�� ¼ Eð1þ iZÞ�, (1)

where E� is the complex modulus, and s and � are the Fourier transforms of stress and strain, respectively.
The complex modulus of a viscoelastic material depends on temperature and frequency. To include the

effects of temperature into the dynamic behavior of viscoelastic materials, the temperature–frequency
superposition principle [12] can be used. This converts the temperature effects into those of frequency. From
the temperature–frequency equivalence hypothesis, the complex modulus values at any frequency f1 and any
reference temperature T1 are identical to those at any other frequency f2 at a different temperature T2 if the
shift factor a(T2) is determined as follows:

E�ðf 1;T1Þ ¼ E�ðf 2aðT2Þ;T2Þ, (2)

where fa(T) refers to the reduced frequency. Therefore, preparing a master curve for the complex modulus of a
viscoelastic material against frequency at a reference temperature T0 in absolute degrees, it is easy to predict
the complex modulus at any other temperature using the shift factor.

For many viscoelastic materials the shift factor in the logarithmic scale is inversely proportional to
temperature over a wide temperature range. Accordingly, the Arrhenius Eq. (3) can be used to approximate
the relationship as follows:

logðaðTÞÞ ¼ d1
1

T
�

1

T0

� �
. (3)

Here, d1 is a material constant. However, it is also known that a linear Arrhenius relationship can deviate from
experimental data at higher and lower temperatures. In this case, a nonlinear relationship that can be used is
the William–Landel–Ferry (WLF) Eq. (4):

logðaðTÞÞ ¼ d1
ðT � T0Þ

ðb1 þ T � T0Þ
, (4)

where b1 is a material constant.
To mathematically describe the dynamic characteristics of the complex modulus of the viscoelastic

materials, constitutive equations that relate stresses and strains should be known. The fractional-derivative
model represents the damping elements as a time derivative of an order smaller than unity. The constitutive
equation of the four-parameter fractional-derivative model can be written as follows:

sðtÞ þ c1D
bsðtÞ ¼ a0�ðtÞ þ a1Db�ðtÞ, (5)

where 0obo1, and a0; a1; c1 and b are material parameters. Db indicates the fractional-order derivative, as in

DbsðtÞ ¼
1

Gð1� bÞ
d

dt

Z t

0

sðtÞ

ðt� tÞb
dt, (6)

where GðxÞ is the Gamma function. It should be pointed out that the four-parameter fractional-derivative
model must satisfy the thermodynamic requirements of nonnegative internal work and the nonnegative energy
dissipation rate. The fractional-derivative model satisfies the thermodynamic constraints if the four
parameters are positive and a1=c1Xa0 [19]. The complex modulus of the fractional-derivative model can be
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obtained by the Fourier transform of Eq. (5):

s ¼
a0 þ a1ðioÞ

b

1þ c1ðioÞ
b � ¼ E��. (7)

Here, o is the angular velocity. Introducing the reduced frequency in order to consider temperature effects
into Eq. (7), the complex modulus of viscoelastic materials are finally expressed as

E� ¼ Eð1þ iZÞ ¼
a0 þ a1½if aðTÞ�b

1þ c1½if aðTÞ�b
. (8)

It is well known that the fractional-derivative model can sufficiently represent the real behavior of
viscoelastic materials over a wide frequency range [7]. Therefore, when identifying the material parameters
of viscoelastic materials, the fractional-derivative model can describe the dynamic characteristics of the
viscoelastic materials over frequency and temperature variations.

To estimate the fractional-derivative-model parameters of an unknown material with conventional
methods, many initial tests should be repeated until a sufficient number of complex moduli are acquired at
different frequencies and temperatures using, for example, the Oberst beam test, as shown in Fig. 1. Next,
from the acquired data, the coefficients of the fractional-derivative model are determined using a statistical
data analysis technique that minimizes the mean-square error between the theoretical values and the tabulated
values. However, the statistical data analysis process and the data collection step are time-consuming, as trial-
and-error steps are involved; specifically, the reference temperature is assumed and the mean-square error is
minimized between the theoretical values and the experimental data. The trial-and-error step is repeated in
turn until the global minimum value of the least-square error is obtained.

2.2. Finite element analysis of a damped beam

Various methods are available for the response analysis of the unconstrained-layer-damping beam shown in
Fig. 2. Among those, the equivalent rigidity method of Ross, Kerwin, and Ungar (RKU) is a popular method
not only for its simple form but also due to its accuracy. For the example of the unconstrained damping layer
beam, the storage modulus and the loss factor of the viscoelastic damping layer are E2 and Z2, respectively.
The storage modulus, the loss factor, and the second area moment of the base beam are E1, Z1, and I1,
respectively. The equivalent complex flexural rigidity, E�I , of the unconstrained beams using the RKU
equation is written as [12]

E�I

E�1I1
¼ 1þ e�h3

þ 3ð1þ hÞ3
e�h

1þ e�h
, (9)
Base beam
Viscoelastic damping material

Fig. 1. Oberst beam test configuration.

H2

H1

Viscoelastic Layer

Base Beam

Ε2, η2

Ε1, η1

Fig. 2. Unconstrained damping layer beam.
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where h ¼ H2/H1, e� ¼ E�2=E�1, and the superscript (*) refers to complex quantity. From the RKU equation,
the equivalent storage modulus of the unconstrained-layer-damping beam is the real part of Eq. (9), and the
equivalent loss factor can also be obtained from the imaginary part of Eq. (9). Thus, the unconstrained-
damping-layer beam can be analyzed using a finite beam element formulation with the equivalent flexural
rigidity. Introducing a finite beam element with flexural displacement and rotations at the nodes with cubic
shape functions and ignoring the shear deformation as the unconstrained-damping-layer beam undergoes
primarily extensional bending, it is possible to obtain the equations of motion, as follows:

½M�f €xg þ ½K�fxg ¼ ffg. (10)

Here, [M] and [K] are the global mass and stiffness matrices, respectively, and {x} and {f} are the displacement
and force vectors, respectively. Here, the matrix [K] is a complex-valued matrix because the equivalent stiffness
of the viscoelastic damping layer beam becomes a complex quantity. In addition, the matrix [K] satisfies the
following relationship:

½K� ¼ Re½K� þ i � Im½K� ¼ Re½K�ð1þ iZÞ, (11)

in which Re and Im refer to real and imaginary parts, respectively. Assuming the harmonic motion of the
system, the corresponding eigenvalue problem can be defined as

Re½K�fyg ¼ B½M�fyg, (12)

where the vector {y} is the eigenvector and Bð¼ o2 ¼ ð2pf Þ2Þ is the eigenvalue. The eigenvalue problem of
Eq. (12) is a frequency-dependent equation because the stiffness matrix is a function of the frequency due to
the viscoelastic damping layer. To solve the frequency-dependent eigenvalue problem, an iteration scheme is
necessary. In this study, a simple re-substitution method is used. The first step of the method is the assumption
of the eigen-frequency, f0, for a given temperature. It is then possible to evaluate the complex modulus of the
viscoelastic material from Eq. (8); consequently, the equivalent stiffness of the elements can be calculated
using Eq. (9). Next, solving the linear eigenvalue problem of the assembled equation, it is possible to obtain a
new frequency and repeat iterations by updating the frequency. If the difference in the frequencies during the
iterations converges to zero, the iteration stops.

The response of the unconstrained-layer-damping beam is calculated using the modal superposition
method. The modal superposition principle gives an expression of the harmonic responses in vibration
problems. The displacement of the damped structure can then be written as

fxg ¼
Xm

k¼1

akfykg, (13)

where m and yk are the number of modes and the k-th eigenvector, respectively, and ak is the k-th modal
coordinate, as follows:

ak ¼
fykg

TfFg

ðzð1þ iZkÞ � o2Þ
. (14)

Here, {F} and Zk are the harmonic nodal force vector and the loss factor of the k-th mode, respectively.
The loss factor of a structure for a vibration mode is defined as

Zk ¼
Xp

j¼1

ZjUej

,Xp

j¼1

Uej ¼
Xp

j¼1

ZjUej

,
U , (15)

where p is the number of finite elements and Zj is the loss factor of the j-th element. Additionally, Uej is the
strain energy of the j-th finite element and U represents the total strain energy.
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3. Identification of the viscoelastic material parameters

3.1. A proposed identification method

To develop an efficient estimation method of the fractional-derivative-model parameters, in this paper it is
assumed that if a numerical model reproduces measured responses, the parameters of the material used
in the simulation model are then identical to the true values of the material properties. Thus, by mini-
mizing the response difference between the measured and simulated FRFs using a numerical search algorithm,
it is possible to identify the material properties. The basic idea is adopted from a previous study [18].
It is common in many inverse problems that the least-square error between two responses is selected as a
measure of the response difference. Therefore, the summation of the square of the difference between the
simulated and measured FRFs over a concerned frequency range can be defined as an identification index, as
follows:

gðbÞ ¼
XN

i¼1

Z
ðxi

s � xi
mÞ

2 df , (16)

where x, N, and f are the frequency responses, the number of reference responses, and the frequency,
respectively. The subscripts s and m denote the simulated and measured FRFs, respectively. Generally,
gradient-based mathematical programming techniques are used to minimize the identification index
function as gradient-based methods are the most efficient, although they may give a local minimum. The
convex region of the identification index function should be as wide as possible in order for the identification
procedure to consistently yield true values regardless of initial values. In order to widen the convergent region
and make the method of the identification process efficient, the identification procedure is divided into two
steps with proper identification index functions. The first step is the resonant-frequency alignment step, as
illustrated in Fig. 3(a), and the second step is the amplitude-alignment step shown in Fig. 3(b). In the
first step, only the square error of the resonant frequencies is minimized so that the simulated model can
roughly approximate the experimental frequency responses before a fine adjustment of the frequency
responses is achieved. Therefore, the identification index defined in Eq. (16) is split into two functions, as
follows:

Step 1:

g1ðbÞ ¼
XN

i¼1

XM
k¼1

ðli
k;m � li

k;sÞ
2. (17)

Step 2:

g2ðbÞ ¼
XN

i¼1

Z
½20 logðxi

mÞ � 20 logðxi
sÞ�

2 df : (18)

Here, l and M are the resonant frequency and the number of resonant peaks within the relevant frequency
range, respectively. Thus, minimizing the first identification index function with respect to the parameters of
the fractional-derivative model, the response differences will be very small. The second step is the
minimization of the magnitude difference between the measured and simulated FRF, which can be started
from values close to the true values. Accordingly, the two-step identification procedure can significantly reduce
the possibility of falling into a local minimum. Furthermore, as shown in the preliminary numerical study by
the authors [18], the two-step procedure can greatly reduce the computational cost of the identification
procedure; in the first step, only the resonant frequencies rather than every frequency response over a
concerned frequency range are necessary. Fig. 4 shows the contour surfaces of the identification index
functions for a typical damped beam problem [18] according to the parameters normalized to the true values.
As shown in Fig. 4, the first identification index function is sufficiently smooth over the wide region, and the
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second identification index function is very smooth near the true values. The iterative procedure of the
identification is summarized in Fig. 5.
3.2. Parameters sensitivity analysis

The fractional-derivative-model parameters can be identified using a gradient-based numerical search
method. In order to identify the material parameters using gradient-based algorithms, a parameter sensitivity
analysis for the response is necessary. Parameter sensitivity is the gradient of a function with respect to a
parameter. The computational cost of the iterative identification procedure is heavily dependent upon the
efficiency of the parameter sensitivity analysis. In this study, an analytical formulation of the sensitivity
information is used for the frequency responses and eigenvalues. As a simple alternative method, the finite
difference method can be used to calculate the design sensitivity information. However, the finite difference
method is very expensive and loses accuracy near the minimum point, which results in a slow convergence rate
of the numerical search algorithm. In this study a direct differentiation method [20,21] is applied to the discrete
system equations to obtain an analytic design sensitivity formula with respect to the material parameters for
an FRF.
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The response of the unconstrained-layer-damping beam is expressed as Eq. (13). The parameter sensitivity
information is obtained by differentiating the response expression with respect to the fractional-derivative-
model parameters, as follows:

dx

db
¼
Xp

k¼1

dak

db
fykg þ ak

dyk

db

� �� �
, (19)
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where

dak

db
¼

dyk

db

� �T

� fFg � ðzkð1þ iZkÞ � o2Þ
�1
�

fykg
TfFg

dz
db
ð1þ iZÞ þ izk

dZk

db

� �
ðzkð1þ iZkÞ � o2Þ

2
, (20)

where b denotes the fractional-derivative-model parameters. Investigating the sensitivity expression of
Eq. (20), the parameters sensitivity of the response can be calculated from the sensitivity of the eigenvalue,
eigenvector, loss factor, and derivative expression of the complex modulus represented by the fractional-
derivative model.

The eigenvalue sensitivity formula for the k-th eigenvalue, dzk=db, in discrete form is obtained by
differentiating the eigenvalue problem equation for the k-th eigenvalue and eigenvector. Premultiplying the
k-th eigenvector with the resulting equation and applying the orthogonal condition, the eigenvalue sensitivity
formula can be obtained by the following equation:

_Bi ¼ fyigT
@K

@b

� �
� Bi @M

@b

� �� �
fyig. (21)

The details of the parameters sensitivity formula can be found in Ref. [18].

4. Application to a damping material

To verify the identification method that was proposed in the previous section, a viscoelastic damping
material, 3M-467 adhesive, is selected, and its fractional-derivative-model parameters will be identified in this
section. To obtain the reference responses of the identification method at several temperatures, impact
hammer tests in a constant-temperature chamber were carried out. Figs. 6 and 7 show a schematic diagram of
the test set-up and the clamped beam structure, respectively. The beam-clamping structure was composed of a
steel jig fixed on a test bench and an aluminum beam. The length, width, and thickness of the beam were 200.0,
20.0, and 4.0mm, respectively. The aluminum beam was clamped by two plates fastened by six steel bolts with
a constant torque. A Polytec Laser Doppler Velocimetry (LDV) and Cada-X software [22] were used to
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Fig. 7. Experimental set-up for the clamped-free beam.
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acquire the response signals. Only one directional component perpendicular to the beam was excited in the
experiment by impacting the beam on the free end point of the center line and was also measured by the LDV.
The frequency band was 3000Hz with a frequency resolution of 1Hz.

A finite element model for the bare beam was developed and validated. The bare beam was modeled by 40
linear finite elements. The exact material properties of the bare beam should be known prior to applying the
proposed method to a damping material. The Young’s modulus value of aluminum is well-known; however, it
has small variation according to samples. To estimate the exact material properties of the bare beam, the
calculated FRF of the bare beam was correlated with the measured response of the bare beam by slightly
changing the Young’s modulus and structural damping values from the typical values of aluminum. Fig. 8
shows the experimental and the calculated FRFs for the bare beam. In Fig. 8, one can see very good agreement
between the two results. The estimated material properties of the bare beam were used for the FE model as the
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Table 1

The material properties of aluminum beam.

Young’s modulus 6.91GPa

Density 2780 kg/m3

Poisson’s ratio 0.31

Damping coefficient 0.001

2500
80

90

100

110

R
ec

ep
ta

nc
e 

(d
B

)

Frequency (Hz)

25°C

35°C

40°C

55°C

Bare beam

2550 2600 2650 2700 2750 2800

Fig. 9. Measured FRFs at different temperatures for the 3M-467 coated beam.

S.-Y. Kim, D.-H. Lee / Journal of Sound and Vibration 324 (2009) 570–586580
exact value material properties of the bare beam. The material properties used in the FE model are listed in
Table 1.

A viscoelastic material, 3M-467 adhesive, was bonded onto the bare beam at a thickness of 1.2mm. The
length and width of the viscoelastic damping layer were identical to those of the base beam. The fractional-
derivative-model parameters of the viscoelastic material were then identified using the proposed method. The
reference FRFs were measured at the four different temperatures of 25, 35, 40, and 55 1C. To measure the
FRFs at a temperature, the temperature of the environment chamber was kept at the given temperature at
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least 2 h. The measured responses were averaged seven times for each temperature. Fig. 9 shows the fourth
peak of the measured FRFs. It can be shown in Fig. 9 that a hotter viscoelastic material results in higher
damping and lower stiffness. The damped beam was also modeled using 40 finite elements with the equivalent
stiffness. Subsequently, the identification index function was defined and minimized in order to identify the
material parameters. The lower and upper limits of the frequency band for the index function were 30 and
3000Hz, respectively. To solve the minimization problem, a commercial program, DOT Ver. 5.4 [23], was
employed with the analytical sensitivity information. To numerically validate the proposed parameters
sensitivity analysis procedure, the sensitivity results of the damped beam at the initial configuration were
compared with those of the finite difference method. The initial parameters of the fractional-derivative model
are as follows: a0 ¼ 3.0, a1 ¼ 5.0, c1 ¼ 0.1, b1 ¼ 380, d1 ¼ 12, b ¼ 0.5, and T0 ¼ 30 1C. The sensitivities of
fractional-derivative-model parameters for the FRFs at the free end of the beam were then calculated. The
calculated fractional-derivative-model parameter sensitivities were compared with those of the forward finite
difference method, as shown below:

@x

@b
ffi

Dx

Db
¼

xðbþ DbÞ � xðbÞ

Db
. (22)

Here, Db is the amount of perturbation in the fractional-derivative-model parameters. For the finite difference
method, perturbation by 0.01 percent of the parameter was used. Fig. 10 shows that the two results are in good
agreement, which proves that the presented parameters sensitivity formulation and the numerical
implementations were carried out correctly.
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Fig. 10. Response sensitivities with respect to the material parameters compared with those of FDM using WLF shift factor equation:

(a) a1, (b) b, (c) d1, and (d) T0.
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By identifying the fractional-derivative-model parameter using the proposed identification procedure, it is
possible to select the linear Arrhenius or the nonlinear WLF relationships to define the relationship between
the shift factor and temperature. If the linear relationship is used, it was shown in an earlier study [18] that two
reference FRFs are sufficient when identifying the parameters. However, a number of FRFs over the relevant
temperature range must be given for a nonlinear WLF relationship. First, the parameters were identified with
the four reference FRFs measured at the different temperatures using the linear Arrhenius relationship.
Table 2 shows the identified parameters of the fractional-derivative model with the Arrhenius relationship.
Comparing the simulated responses calculated with the identified parameters with the reference FRFs, the
regenerated FRFs at 25, 35, and 40 1C were in very good agreement with the reference FRFs. However, as
shown in Fig. 11, the reference FRF and the calculated one at 55 1C showed a slight difference in the location
of the fourth resonant frequency, which indicates that the linear relationship of the shift factor does not
Table 2

Identified material parameters for 3M-467 adhesive using the Arrhenius shift factor relationship.

Parameters Initial value First step Second step

a0 1.00E�02 0.44414E+00 0.34132E+00

a1 1.00E�02 0.87051E+00 0.49361E+00

c1 1.00E�02 0.15393E�03 0.10205E�03

d1 1.00E+00 0.48571E+04 0.52783E+04

b 1.00E+00 0.56116E+00 0.52901E+00

T0 1.00E+01 0.26107E+02 0.23703E+02
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Fig. 11. Regenerated FRF at 55 1C using the Arrhenius shift factor relationship compared with that of measured one.

Table 3

Identified material parameters for 3M-467 adhesive using the WLF shift factor relationship.

Parameters Initial value First step Second step

a0 1.00E�02 0.41589E+00 0.34065E+00

a1 1.00E�02 0.86751E+00 0.49161E+00

c1 1.00E�02 0.14993E�03 0.10212E�03

b1 1.00E+00 0.15571E+02 0.19489E+02

d1 1.00E+02 0.35621E+03 0.37681E+03

b 1.00E+00 0.56886E+00 0.52618E+00

T0 1.00E+01 0.25707E+02 0.23527E+02
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Fig. 12. Regenerated FRFs using the WLF relationship compared with the reference FRFs: (a) 25 1C, (b) 35 1C, (c) 40 1C, and (d) 55 1C.
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properly describe the temperature effects of the material around 55 1C. Thus, the identification process was
repeated once more under the same conditions apart from the use of the nonlinear WLF relationship. Table 3
shows the identified parameters of the fractional-derivative model with the WLF relationship. Fig. 12 also
shows the regenerated FRFs with the identified parameters compared to the reference FRFs at 25, 35, 40, and
55 1C. One can see very good agreement between the regenerated FRFs and the reference FRFs.

In the second step of the identification procedure, only the magnitude information of the FRFs was used
(the phase information was not used) to identify the parameters although the response is a complex quantity.
This is because, in a previous numerical study on a structural joint identification problem [24], the second
author tried to minimize the differences of the real and imaginary components of FRFs simultaneously, but
the identified results worse than the magnitude-only approach. Therefore, the authors adopted the magnitude-
only approach in this study. The proposed index function in this study has more advanced features than the
previous one; that is, the two-step approach. In the first step, all eigen-frequencies are arranged in correct
sequential order. This correct sequence of the eigen-frequencies sets the phase values close to those of the
reference FRFs. In the second step, the magnitude differences are minimized. To minimize the magnitude
differences, however, the authors use the complex-quantity sensitivity formula which has gradient values for
the real and imaginary parts of the FRFs. The movement of the real and imaginary parts cannot be
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independent, but those are restricted by the amount of damping near resonant frequencies. The fractional-
derivative-model parameters are determined so as to give the closest FRFs to the reference FRFs in an overall
sense over a specified frequency range. Therefore, in most cases, under this approach the minimization of the
magnitude differences resulted in good coincidence of phase values between the FRFs. Fig. 13 shows a phase
comparison after the identification. One can see good agreement of the phase values.

As shown in Fig. 12, the nonlinear WLF relationship describes the temperature effect very well. It is possible
to determine the shift factor value for each temperature manually by minimizing the response difference
between the reference FRF and calculated value. These results are plotted with the identified Arrhenius and
WLF relationships in Fig. 14. In this figure, the linear Arrhenius relationship begins to deviate from the
genuine value above 40 1C.

Essentially, the fractional-derivative-model parameter values identified with the WLF relationship are very
close to the listed material parameters of Ref. [12]. In Fig. 15, the material properties of the 3M-467 adhesive
identified by the proposed method are compared with those of Ref. [12]. In Fig. 15, it was assumed that the
Poisson’s ratio of the adhesive is constant with respect to the frequency in order to convert the results of the
present study. The Poisson’s ratio used was 0.47. In Fig. 15, two results are shown to be in good agreement
over the wide reduced frequency range.
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Fig. 15. Identified material properties of 3M-467 adhesive compared with Ref. [12].
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5. Conclusions

To design and analyze damped structures, material properties, such as the elastic modulus and loss factor of
the damping materials, are essential information. Viscoelastic materials show highly frequency- and
temperature-dependent behavior. The four-parameter-fractional-derivative model can serve as a solution in
many areas in order to represent the complex modulus and the loss factor of damping materials with respect to
frequency and temperature. In this paper, an estimation method to obtain efficiently unknown fractional-
derivative-model parameters of a real viscoelastic material is proposed. In the proposed method, the reference
FRFs are measured using a cantilever beam impact hammer test at different temperatures. The FRFs of the
points that are identical to the measured values are calculated using an FE model with the equivalent stiffness
approach. The material properties are then identified using a numerical search algorithm by minimizing the
response differences between the measured and simulated FRFs. The proposed method can reduce the number
of required measurements for identification of the material properties. Moreover, data preparation using the
proposed method is simplified, as the method uses raw FRFs directly as reference responses. In addition, the
curve-fitting process is very fast because an efficient two-step approach is introduced and the analytic
sensitivity formulae are used during the parameter-updating scheme.

The proposed method was applied to a damping material to estimate the fractional-derivative-model
parameters of the damping material. Only four FRFs of a damped beam structure were measured at different
temperatures for the identification of frequency- and temperature-dependent material properties. Both linear
and nonlinear relationships between the logarithmically scaled shift factors and temperatures were examined
in the identification of the material parameters. The estimation results show that the proposed method can
accurately identify the fractional-derivative-model parameters for actual damping materials with minimal data
preparation.
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